O.P.Code: 19CI0603

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech III Year I Semester (R19) Supplementary Examinations Nov-2023 SOFTWARE ENGINEERING &TESTING

		SOFTWARE ENGINEERING &TESTING			
		(Computer Science & Information Technology)	Max. l	Marke	e: 60
Tim	le:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	VIAI A	s. 00
		UNIT-I			
			CO1	τ.	CM.
1	a	An application has the following: 10 external inputs, 12 high external	CO1	L6	6M
		outputs, 20 low internal logical files, 15 high external interface files, 12			*
		average external enquiries. And a value of complexity adjustment factor			
		of 1.10. What are the unadjusted and adjusted function pint counts?	CO1	L1	6M
	b	Is software metrics required in software engineering? Why do we really	COI	LI	OIVI
		need metrics in software.		is.	
		OR	CO1	L2	6M
2	a	Explain in detail the following software metrics with example.	COI	112	UIVI
		i) Function point ii) Information flow metrics	CO1	L5	6M
	b	Write a factorial program in C language. List out the operators and	COI	110	OIVI
		operands and also calculate the values of software science measures			
		like η , N, V, E, and λ ?			
			CO2	L2	6M
3		List the characteristics of good SRS document and their requirements	CO2	L2 L6	6M
	b	Illustrate E-R diagram with the diagram.	COZ	LU	0141
		OR	CO2	L2	6M
4	a	What are the components of a use case diagram? Explain their usage	002		OIVI
	L.	with the help of an example Model a Dataflow diagram for a "Library Management System". State	CO2	L6	6M
	D	and explain the functional requirements you are considering.	001		
		UNIT-III			
			CO3	L2	6M
5	a	Explain the following software reliability models.	COS		OIVI
		i) Basic Execution Time Model			
		ii) Calendar Time Component Model	CO3	L1	6M
	b	What is software quality? Discuss software quality attributes. OR	COS	131	0111
,	_	Explain the following software reliability models.	CO3	L2	6M
6	a	i) Basic Execution Time Model ii) Calendar Time Component Model			
	ե	The following parameters for basic and logarithmic poisson models are	CO3	L6	6M
	D	UNIT-IV			(.)
			CO4	L2	6M
7		Compare various debugging technique	CO4	L2	6M
	b	Explain mutation testing technique. OR	004	112	OIVI
•			CO4	L1	6M
8	a		204		J
	1.	person important? Summarize an effect graphing testing technique.	CO4	L2	6M
	D	ounnitatize an effect graphing testing teeninque.			

UNIT-V

9	Compare New software development and Re-engineering Classify different categories of software documentation OR	CO5	L4 L1	6M 6M
10	What is reverse engineering? Discuss levels of reverse engineering. What are configuration management activities? Draw the Performa of change request form.	CO5	L6 L6	6M 6M

*** END ***